

Construction and Built Environment: Future Horizons

17-19 June 2014, Brussels

http://www.ectp.org/Conference2014.asp

novel indicators for identifying critical **INFRA**structure at **RISK** from natural hazards

Dr. Mark Tucker Roughan & O' Donovan Innovative Solutions (ROD-IS)

Project Details

Funding Vehicle

EU 7th Framework Programme

Work Programme

2013 Cooperation Theme 6-Environment (incl. Climate Change)

Call Topic

Env.2013.6.4-4 Towards stress tests for critical infrastructure against natural hazards

Duration & Budget

October 2013 – September 2016 approx. €2,8 million

Background to the Concept

- Preparedness and resilience/vulnerability of society
- Natural hazards on the increase coupled with
 - ➤ Increased land occupation
 - Eastwards expansion of the EU
 - > Ageing infrastructure
 - ➤ Climate Change
 - ➤ Human activity
 - ➤ Pan European Networks

EU Concerns

Resilient Infrastructure

- Effective Road & Rail Transport Network
- Increased Traffic
- Ageing Infrastructure
- Budgets
- Resources

Goal of INFRARISK

- Develop reliable stress tests to establish the resilience of Critical European Infrastructures to rare low frequency extreme natural hazard events
- To aid decision making in the long term regarding robust infrastructure development and protection of existing infrastructure

Expected Impacts

- Improved & more reliable stress tests of CI
- Support for decision making & Prioritisation in the field of mitigation options and support to preparedness.
- Pan European and Optimised risk assessment process
- Optimised operational risk assessment for maintenance and management
- Resilience to climate risks
- Decoupling of economic growth & energy use

Consortium

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Consortium

Coordinators

- Roughan & O' Donovan (ROD)
 - Bridges
 - > Transportation
 - ➤ Buildings
 - Environmental
 - Asset management
- Roughan & O' Donovan Innovative Solutions (ROD-IS)
 - > SHM
 - Weigh-in-Motion
 - Traffic load modelling
 - Risk Based Asset Management

Important Factors

- > Which Hazards?
- ➤ Type, Location, Components, Connectivity of infrastructure affected/disrupted?
- > Types & extent of networks?
- > Material utilised in infrastructure?
- > Physical condition of infrastructure?
- Design Codes?
- ➤ Required Level of Service?
- > Criticality descriptor?
- Post event response & communication?
- > Level of preventive actions?

Output Considered

- > Extent of consequences
- > Structural damage
- Casualties / fatalities
- > Environmental impact
- > Rate of flow of traffic
- > Restoration/recovery time
- > Emergency services
- Cost of damage
- Cost of recovery

• INFRASTRUCTURE

- > Road & Rail
 - Bridges
 - Surface
 - Tunnels
 - Embankments

INFRASTRUCTURE

- > Road & Rail
 - Bridges
 - Surface
 - Tunnels
 - Embankments

HAZARDS

- > Seismic
- > Flood
- ➤ Landslide
- Trigger/Cascading
 Hazards

Giardini et al. 2013

HAZARDS

- > Seismic
- > Flood
- ➤ Landslide
- Trigger/Cascading
 Hazards

Alfieri et al. 2013

- HAZARDS
 - > Seismic
 - > Flood
 - ➤ Landslide
 - Trigger/Cascading
 Hazards

Work Streams

- Step 1: Define problem
- Step 2: Define system
- Step 3: Identify Risk
- Step 4: Risk Analysis
- Step 5: Evaluate Risk

Model Network Indirect Losses Caused by Flood

Output Network

Output Elements

Novel Indicators for identifying critical **INFRA**structure at **RISK** from Natural Hazards

Website

www.infrarisk-fp7.eu

Acknowledgement

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 603960