



### A process to assess infrastructure related risks due to natural hazards with stress tests – Part 2 Infrarisk Consortium

- PSCT Pieter van Gelder, Noel van Erp
- ETHZ Bryan T. Adey, Jürgen Hackl, Juan Carlos

Lam and Magnus Heitzler

**Infrarisk Final Workshop** 

19<sup>th</sup> September 2016, Madrid, Spain





### **Stress Testing Concept**

- Stress tests refer to the analysis of a particular system or subsystem under a specific set of adverse conditions to determine the potential losses.
- The outcome of stress tests can be used to inform decisions regarding the protection of existing or future-planned infrastructure, which can contribute to the resilience of critical transport networks.





### **Stress Test Definition**

In a stress test we just construct the one outcome probability distribution for some given adverse scenario S, say,  $p(O_{i^{(s)}} | S, A^{(0)})$ where the  $O_i^{(s)}$  are the outcomes, for  $i^{(S)} = 1, ..., n^{(S)}$  and  $A^{(0)}$  is the action to keep the status quo.





### **Stress Test Definition**

- The stress output consists of, in probability theoretical terms, an outcome probability distribution which is conditional to the proposed stress scenario; i.e. a conditional outcome distribution.
- Typical stress outcome metrics are the costs of physical repairs to the network, delay times for network users, loss of connectivity etc.





### **Missed stress test opportunity**







Stress test framework follows the risk framework of WP4

We zoom in on the following steps:

- -Generate a natural hazard stress scenario  $\rightarrow$  Spatial hazard map
- Spatial hazard map  $\rightarrow$  Probability map via conditional fragility curves
- Probability Map → Damage state scenario selection via smart algorithms (MC, NS, PSA)
- Selected set of damage state scenarios  $\rightarrow$  Estimation of outcome metric  $\rightarrow$  Evaluation of the outcome metric





### Selecting stress scenario's

- Stress scenarios can be based on
  - historical scenarios, employing shocks that occurred in the past,
  - hypothetical/synthetic scenarios, constructed to take account of plausible changes in circumstances that have no historical precedent.
  - extreme value theory, which applies statistical analysis to the tails of return distributions,
  - maximum loss approach, which estimates the combination of factors that would cause the largest loss to the system under consideration





### Selecting stress scenario's

- Structured brainstorming sessions, such as conducted in general morphological analyses (Ritchey, 1998), may be used to elicit stress scenario's
- One possible instrument by which to structure a brainstorming session is the use of Delphi panels and Similarity Judgment (Prak, 2009)





### Selecting stress scenario's: 1/T years flood hazard (intensity)







### Selecting stress scenario's

#### 1/T years flood hazard (duration)







## Selecting stress scenario's (hydrographs)



INFRARISK - Novel Indicators for Identifying Critical INFRAstructure at RISK from Natural Hazards





### Propagation of flood stress scenario downstream 'Spatial hazard'







### Infrastructural systems

 Infrastructural systems can be modeled as fault tree systems with a large number of (dependent) components







### Spatial hazard map $\rightarrow$ Probability map

# Say we have a probability map for damage states of objects arranged in a 11-by-11 grid, caused by the spatial hazard

| 0.000420084 | 0.000707223 | 0.00112904 | 0.00122693 | 0.00261704 | 0.00294877 | 0.00261704 | 0.00122693 | 0.00112904 | 0.000707223 | 0.000420084 |
|-------------|-------------|------------|------------|------------|------------|------------|------------|------------|-------------|-------------|
| 0.000707223 | 0.00141485  | 0.00294877 | 0.00591196 | 0.00995425 | 0.0121162  | 0.00995425 | 0.00591196 | 0.00294877 | 0.00141485  | 0.000707223 |
| 0.00112904  | 0.00294877  | 0.00827847 | 0.0238561  | 0.0557883  | 0.0777906  | 0.0557883  | 0.0238561  | 0.00827847 | 0.00294877  | 0.00112904  |
| 0.00122693  | 0.00591196  | 0.0238561  | 0.111633   | 0.389245   | 0.597382   | 0.389245   | 0.111633   | 0.0238561  | 0.00591196  | 0.00122693  |
| 0.00261704  | 0.00995425  | 0.0557883  | 0.389245   | 0.929766   | 1.         | 0.929766   | 0.389245   | 0.0557883  | 0.00995425  | 0.00261704  |
| 0.00294877  | 0.0121162   | 0.0777906  | 0.597382   | 1.         | 1          | 1.         | 0.597382   | 0.0777906  | 0.0121162   | 0.00294877  |
| 0.00261704  | 0.00995425  | 0.0557883  | 0.389245   | 0.929766   | 1.         | 0.929766   | 0.389245   | 0.0557883  | 0.00995425  | 0.00261704  |
| 0.00122693  | 0.00591196  | 0.0238561  | 0.111633   | 0.389245   | 0.597382   | 0.389245   | 0.111633   | 0.0238561  | 0.00591196  | 0.00122693  |
| 0.00112904  | 0.00294877  | 0.00827847 | 0.0238561  | 0.0557883  | 0.0777906  | 0.0557883  | 0.0238561  | 0.00827847 | 0.00294877  | 0.00112904  |
| 0.000707223 | 0.00141485  | 0.00294877 | 0.00591196 | 0.00995425 | 0.0121162  | 0.00995425 | 0.00591196 | 0.00294877 | 0.00141485  | 0.000707223 |
| 0.000420084 | 0.000707223 | 0.00112904 | 0.00188693 | 0.00261704 | 0.00294877 | 0.00261704 | 0.00188693 | 0.00112904 | 0.000707223 | 0.000420084 |
|             |             |            |            |            |            |            |            |            |             |             |

The damage state space which corresponds with this probability map is  $2^{121} = 2.66$   $10^{36}$ .





## Probability Map → Damage state scenario selection via smart algorithms (MC, NS, PSA)

 The 2.66 10^36 damage state vectors can be reduced to 65536 damage state vectors with a probability coverage of 1.0













### Selected set of damage state scenarios → Estimation of outcome metric







- The level of risk that is considered acceptable will typically vary from situation to situation
- Stress test outcome distributions can be compared to eachother, following a Bayesian decision-theoretical framework





### **Evaluation of the outcome metric**

# Comparison of two conditionalized outcome probability distributions







INFRARISK - Novel Indicators for Identifying Critical INFRAstructure at RISK from Natural Hazards





- Trade-off lower and upper bound 'gains':
  - $\Delta_{LB}$  dominates  $\Delta_{UB}$ .
  - $\Delta_{LB}$  favours  $D_2$  over  $D_1$ .
  - Choose  $D_2$ .



INFRARISK - Novel Indicators for Identifying Critical INFRAstructure at RISK from Natural Hazards





• Or, equivalently, choose  $D_2$  because:

 $LB(D_2) - LB(D_1) > UB(D_1) - UB(D_2)$ 

• Or, equivalently, choose  $D_2$  because:

 $LB(D_2) + UB(D_2) > LB(D_1) + UB(D_1)$ 

• The comparison of bounds may be simplified into comparison of a single measure.  $LB(D_1)$   $LB(D_2)$   $UB(D_2)$   $UB(D_1)$ 





• Choose the decision  $D_i$  which maximizes the sum of bounds:

### $LB(D_i) + E(D_i) + UB(D_i).$

• As opposed to choosing the decision  $D_i$  which maximizes the expectation values:

### $E(D_i).$





### **Concluding remarks**

- General stress test framework is presented in which stress tests are just a special instance of a risk assessment, where instead of marginalizing over all the possible stress scenarios one specific stress scenario is chosen instead for which to gauge its potential effects.
- This stress test framework is simple enough on the conceptual side. On the practical side, however, when one wishes to implement this framework, things can quickly become non-trivial, for which 3 sampling algorithms have been developed.







#### Novel Indicators for identifying critical **INFRA**structure at **RISK** from Natural Hazards

#### Website

### www.infrarisk-fp7.eu

#### Acknowledgement

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 603960