

INFRARISK: Consortium Meeting WP7

"The Integrated Decision-Support Tool"

Dr Zoheir Sabeur, Science Director

University of Southampton IT Innovation Centre

Southampton

INFRARISK Progress Meeting

29th September 2016, DRAGADOS, Madrid, Spain

IDST Design, Architecture

IDST Software Design

- Portal build using Django Framework
- Dynamic content using JavaScript (jQuery, Bootstrap)
- PostgreSQL (PostGIS modules)
- Mapping using OpenSteetMap data

IDST services

Current releases:

http://infrarisk.it-innovation.soton.ac.uk

The IDST Portal Page

IDST Authentication System

Authentication in IDST is based on

- Local user account authentication (exclusive for admin users)
- Third party authentication services (for normal users), e.g.
 - Mozilla
 - Google
 - Yahoo
 - LinkedIn

IDST Login Page

Authorisation and User Roles in IDSP

Authorisation in IDST is based on Roles Role assigns what rights a user has A user can have multiple roles

User profile, status in IDST

The Case Study Information Model in IDST

IDST modelled data

- OSM data sources
 - Bridge
 - Road
 - Tunnel
- Hazard data (supported by Ground Motion Models)
 - PGA
- Structural data
 - Bridges
 - Tunnels
 - Road sections

OSM data models, DB schemas in IDST

osm_bridge					
2	id INTEGER				
	osm_id	CHARACTER VARYING(11)			
	name CHARACTER VARYING(48				
	ref CHARACTER VARYING(16				
	type CHARACTER VARYING(1				
	oneway	INTEGER			
	bridge	INTEGER			
	tunnel INTEGER				
	maxspeed INTEGER				
	length INTEGER				
	geom USER-DEFINED				

osm_road						
🧳 id	id INTEGER					
osm_id	CHARACTER VARYING(11)					
name	CHARACTER VARYING (48)					
ref	CHARACTER VARYING(16)					
type	CHARACTER VARYING(16)					
oneway	INTEGER					
bridge	INTEGER					
tunnel	INTEGER					
maxspeed	INTEGER					
geom	USER-DEFINED					
geom	USER-DEFINED					

osm natural

osm_id CHARACTER VARYING(11)

USER-DEFINED

CHARACTER VARYING(48)

CHARACTER VARYING(16)

INTEGER

id

geom

osm_tentroad			
🧳 id	id INTEGER		
osm_id	CHARACTER VARYING(11)		
name	CHARACTER VARYING (48)		
ref	CHARACTER VARYING(16)		
type	CHARACTER VARYING(16)		
oneway	INTEGER		
bridge	INTEGER		
tunnel	INTEGER		
maxspeed	INTEGER		
geom USER-DEFINED			

osm_landuse				
8	id	INTEGER		
	osm_id	CHARACTER VARYING(11)		
	name	CHARACTER VARYING(48)		
	type	CHARACTER VARYING(16)		
	geom	USER-DEFINED		

osm_railway

id INTEGER
osm_id CHARACTER VARYING(11)
name CHARACTER VARYING(48)
type CHARACTER VARYING(16)
geom USER-DEFINED

	osm_building			
2	🥒 id INTEGER			
	osm_id	CHARACTER VARYING(11)		
	name	CHARACTER VARYING (48)		
	type	CHARACTER VARYING(16)		
	geom	USER-DEFINED		

Powered by yFiles

The IDST Bridge structural model

The IDST Tunnel structural model

The IDST Case Study

IDST Terminology:

- An IDST Process Workflow Engine run is a Case Study or scenario
- An IDST case study stores all necessary information to run a workflow.
- Users can create and manage multiple Case Studies, i.e.
 - Create
 - Run
 - Edit
 - Delete

IDST case study dashboard

IDST on-line help page

Process Workflow Engine Implementation

- Governed by Overarching Risk Management Framework (ORMF), implemented as a Case Study in IDST
 - Define a new Case Study, i.e. name, description
 - Define system boundaries
 - Define the hazard scenario, i.e. hazard source, assign hazard events
 - Configure hazard event assigned models
 - Define the network scenario, i.e. network type, assign network elements and their fragility curves models
 - Define network characteristics, (datasets)
 - Derive damage states for each element using their fragility curves and hazard intensity (e.g.PGA values)
 - Provide results for further processing outside the IDST

Case Study Northern Italy Scenario

- Target area: Region of Bologna, Northern Italy
- Network: Road network, (European TEN-T network)
- Hazards source: Earthquake
 - Hazard event: Ground motion (primary)
 - Hazard event: Earthquake-triggered landslides (secondary)
- Network element types:
 - Bridges
 - Tunnels
 - Road sections
- Determine element characteristics, i.e. network elements in IDST database datasets for bridges, tunnels, road section, or upload user defined.
- Stress tests: determine risk associated with an earthquake hazard event on the road network
- Calculate direct costs

Create a new Case Study, Problem Identification

IDST: Define spatial boundaries

IDST: Define spatial boundaries

IDST: Define spatial boundaries manually

IDST: define hazard scenario

- Source event: e.g. earthquake
- Hazard events:
 - A ground motion hazard
 - and the cascading effects, i.e. earthquake-triggered landslides

IDST: define hazard scenario

IDST: configure hazard model

IDST: define network scenario

Assigning Bridge, Tunnel Fragility Curves

- Median fragility curves with confidence bounds is ported to IDST
- Bridge and tunnel structural data modelled and ingested in IDST, 340 bridges, 30 tunnels
- Mean and standard-deviation for all damage states is calculated for 4 damage states
- Damage state sampling algorithm is also ported in IDST for a given hazard intensity (IM)

a/a	Damage State	Description
0	DS0	No damage
1	DS1	Slight damage
2	DS2	Moderate damage
3	DS3	Extensive damage
4	DS4	Complete damage

INFRARISK - Novel Indic

Assigning Road Section Fragility Curves

Structural Road sections data are modelled

Landslide data are modelled

Fragility Curves calculation porting to IDST is implemented

a/a	Damage State	Description
0	DS0	No damage
1	DS1	Slight damage
2	DS2	Moderate damage
3	DS3	Extensive damage

IDST: add network type elements

IDST: assign fragility functions

IDST: Define network element characteristics

IDST: Dataset network element characteristics

IDST: Overview of network element datasets

IDST: Network element overview

Bridge summary with assigned Fragility Curves

Tunnel summary with assigned Fragility Curves

IDST: Choose centre point of interest

IDST: Anchor PGA grid on centre point

IDST: Calculate Damage States

Case Study Damage State stats

Assigning provisional consequence parameters

	Functional Capacity Loss	Functional Capacity Loss during Restoration	Restoration Time	Restoration Cost
	(% Lane Closure)	(% Lane Closure)	(Days)	(Euros)
Pavements (All)				
No Damage	0	0	0	0
Slight/Minor	0	0.5	1	500
Moderate	0.5	0.5	1	1000
Extensive/Complete	1	1	1	3500
Bridges (All)				
No Damage	0	0	0	0
Slight/Minor	0	0.5	120	100000
Moderate	0.5	0.5	120	750000
Extensive/Major/Severe	1	1	150	1000000
Complete/Collapse/Failure	1	1	150	1000000
Tunnels (All)				
No Damage	0	0	0	0
Slight/Minor	0.75	0.75	120	150000
-Moderate	1	1	120	1000000
Extensive/Major/Severe	1	1	120	3000000
Complete/Collapse/Failure	1	1	365	10000000

Join us to run the IDST

https://infrarisk.it-innovation.soton.ac.uk/

Thank You

FP7 2013 Cooperation Work Programme Theme 6: Environment (Including Climate change)

Novel Indicators for identifying critical **INFRA**structure at **RISK** from Natural Hazards

Website

www.infrarisk-fp7.eu

Acknowledgement

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 603960